
This book documents how to use the RadMusic Script Builder to make custom RadMusic Scripts.

Introduction

Version History

1.1.1

1.1

1.0

Command Line Arguments

XML Format

Tutorials

Converting RadMusic Scripts to XML

Building RadMusic Scripts from XML

Lucas' RadMusic
Script Builder

Lucas' RadMusic Script Builder is a tool that allows you to convert RMS files to and from an XML format

to edit them.

This tool is available from the Donut Team downloads page.

See Command Line Arguments.

See XML Format.

See Tutorials.

Introduction

What is the RadMusic Script
Builder?

Download

Command Line Arguments

XML Format

Tutorials

https://donutteam.com/downloads/RadMusicScriptBuilder/
http://docs.donutteam.com/books/lucas-radmusic-script-builder/page/command-line-arguments
http://docs.donutteam.com/books/lucas-radmusic-script-builder/page/xml-format
http://docs.donutteam.com/books/lucas-radmusic-script-builder/chapter/tutorials

Version History

Version History

This update was released on July 5th, 2018.

Added error handling when inputting invalid FLAC and Ogg Vorbis files.

1.1.1

Version History

This update was released on July 2nd, 2018.

Added support for FLAC and Ogg Vorbis sound files to coincide with the release of the FLAC Support

 and OGG Vorbis Support hacks for Lucas' Simpsons Hit & Run Mod Launcher.

1.1

http://docs.donutteam.com/books/lucas-simpsons-hit-run-mod-launcher/page/about-flac-support
http://docs.donutteam.com/books/lucas-simpsons-hit-run-mod-launcher/page/about-ogg-vorbis-support
http://docs.donutteam.com/books/lucas-simpsons-hit-run-mod-launcher

Version History

Initial Release on May 29th, 2018.

1.0

This is a table of the various command line arguments that the RMS Builder supports.

Command Line Argument Description Initial Release

-inputxml Specify an input XML file. 1.0

-inputrms Specify an input RMS file. 1.0

-outputxml Specify an output XML file. 1.0

-outputrms Specify an output RMS file. 1.0

-outputtypes
Specify an output text file that will
contain RMS types.

1.0

-rsdpath

Specify a path or paths to your mod's
music files so the tool can get the file
size and other information for custom
tracks automatically.

1.0

Command Line Arguments

The Composition element is used as the root of the file.

It contains FadeTransition elements, StitchTransition elements, Event elements, State elements,

RSDFile elements, Stream elements, Clip elements and Region elements.

SoundMemoryMax: Unknown.

CacheMemoryMax: Unknown.

StreamSizeMin: Unknown.

Composition attributes should only be specified on the Composition element if it is not the root of a

file being included.

An Include allows you to load another XML file containing parts of a Composition. This is useful for

organization.

Path: The path to the file to be included.

XML Format

Composition

<Composition SoundMemoryMax="1700000" CacheMemoryMax="2000000" StreamSizeMin="500">

	...

</Composition>

Include

<Include Path="Transitions.xml" />

Fade Transitions are used to define how to transition from one Region to another. They can also

contain Beat elements.

SourceRegion: The region to handle a transition from. Use "anything" for transitioning from any

region.

TargetRegion: The region to handle a transition to. Use "anything" for transitioning to any region.

SourceTime: Unknown.

SourceStart: Unknown.

TargetTime: Unknown.

TargetStart: Unknown.

Unknown.

Unused.

FadeTransition

<FadeTransition SourceRegion="M1_main_region" TargetRegion="M1_end_Neg_region" SourceTime="5" SourceStart="0" TargetTime="0" TargetStart="0">

	<Beat>1</Beat>

	<Beat>2</Beat>

	<Beat>3</Beat>

	<Beat>4</Beat>

</FadeTransition>

Beat
<Beat>1</Beat>

StitchTransition

SourceRegion: The region to handle a transition from. Use "anything" for transitioning from any

region.

TargetRegion: The region to handle a transition to. Use "anything" for transitioning to any region.

TransitionRegion: Unknown. Optional.

Events are generally used by the game executable and the StageStartMusicEvent command in mission

scripts to perform various event actions listed below.

Name: The name of the event used by the game and via mission scripts.

A PlayRegionAction is used to play a Region and specify the resume type for it.

Region: The name of the Region to play.

RegionResumeType: Specify if the Region should Restart or Resume.

A PushRegionAction is used to push a Region on top of the stack and play it. It also specifies how to

transition to the Region being pushed on top and how to transition back when necessary.

Event

<Event Name="M1_start">

	<PlayRegionAction Region="M1_main_region" RegionResumeType="Resume" />

</Event>

PlayRegionAction

<PlayRegionAction Region="M1_main_region" RegionResumeType="Resume" />

PushRegionAction

<PushRegionAction Region="StoneCutters_Tunnel_region" TargetRegionResumeType="Resume" CurrentRegionResumeType="Resume" />

http://docs.donutteam.com/books/hit-run-file-types/page/stagestartmusicevent

Region: The name of the Region to push to the top of the stack and play.

TargetRegionResumeType: Specify if the Region being pushed to the top should Restart or

Resume.

CurrentRegionResumeType: Specify if the Region currently playing should Restart or Resume

when the Region being pushed to the top of the stack is later popped off the top of the stack.

A PopRegionAction is used to pop a Region off the top of the stack.

Region: Specify the Region to pop off the top of the stack. If the specified region is not currently on

top, this action will do nothing. Optional.

Unused.

LayerName: The name of a Layer.

Unused.

LayerName: The name of a Layer.

An Event with states is similar to a regular Event except it references a State element and defines

multiple actions inside StateValue elements.

PopRegionAction

<PopRegionAction Region="StoneCutters_Tunnel_region" />

StartLayerAction

StopLayerAction

Event (with States)

Name: The name of the event used by the game and via mission scripts.

State: The name of the state to use for this event.

A StateValue should be defined for each state inside the referenced State. Each StateValue can

contain the various event actions listed previously.

A State is referenced by an event that has multiple different music states that can be controlled by

SetMusicState. It can contain Value elements.

<Event Name="M2_start" State="Mission2">

	<StateValue>

		<!--Stage1-->

		<PlayRegionAction Region="M2_S1_start_region" RegionResumeType="Resume" />

	</StateValue>

	<StateValue>

		<!--Stage2-->

		<PlayRegionAction Region="M2_S2_start_region" RegionResumeType="Resume" />

	</StateValue>

</Event>

StateValue

<StateValue>

	<!--Stage1-->

	<PlayRegionAction Region="M2_S1_start_region" RegionResumeType="Resume" />

</StateValue>

State

	<State Name="Mission5">

		<Value>Stage1</Value>

		<Value>Stage2</Value>

http://docs.donutteam.com/books/hit-run-file-types/page/setmusicstate

Name: The name of the state referenced by the Event and used in the first argument of

SetMusicState command.

Used to define the names for the states inside the State to be used in the SetMusicState command.

NOTE: There is a limit of 6 state values among all State definitions in any given music RMS file.

An RSDFile element defines information about an RSD File.

FileName: The name of the file without the .rsd file extension. This is relative to the sound\music

folder.

The following attributes should only be specified if the RSD file specified above is not present in any

specified RSD Path(s):

Size: The size of the file in bytes.

AudioFormatEncoding: The type of encoding the file uses. Supported types are PCM, VAG, PCMB

, XADP, GADP and RADP.

AudioFormatChannels: The amount of audio channels the file contains.

AudioFormatBitResolution: The bit resolution of the samples in the audio.

AudioFormatSamplingRate: The sample rate of the audio.

	</State>

Value

<Value>Stage1</Value>

RSDFile

<RSDFile FileName="Simpsons_Theme" Size="7788348" AudioFormatEncoding="PCM" AudioFormatChannels="2" AudioFormatBitResolution="16" AudioFormatSamplingRate="24000" />

http://docs.donutteam.com/books/hit-run-file-types/page/setmusicstate
http://docs.donutteam.com/books/hit-run-file-types/page/setmusicstate

A Stream is an object that represents a music track. They reference an RSDFile and set an appropriate

tempo and time signature for it.

Name: The name of the Stream to be referenced by Regions and Transitions

RSDFile: The name of the RSDFile the Stream will use.

TempoTrack: The tempo and time signature of the RSDFile.

TempoTrackStartBeat: Unknown.

Streamed: Unknown.

Unused.

Name: The name of the Clip.

RSDFile: The name of the RSDFile the Clip will use.

TempoTrack: The tempo and time signature of the RSDFile.

TempoTrackStartBeat: Unknown.

A Region contains one or more Layer elements.

Stream

<Stream Name="Simpsons_Theme" RSDFile="Simpsons_Theme" TempoTrack="172 4/4" />

Clip

Region

<Region Name="FE_region">

	<Layer Name="l">

Name: The name of the Region.

ExitRegion: The name of a Region to switch to when this region ends. Optional.

Volume: The volume of the region's contents. Optional, defaults to 1.0.

A Layer element can contain various types of sequence event listed below. They can also contain Beat

elements.

Name: The name of the layer.

Constant: Unknown. Optional, defaults to true.

Volume: Specify the volume of the layers contents. Optional, defaults to 1.0.

A LogicAndEvent simply executes every sequence event inside it.

		<LogicRepeatEvent>

			<StreamEvent Name="Simpsons_Theme" />

		</LogicRepeatEvent>

	</Layer>

</Region>

Layer

<Layer Name="l">

	<LogicOrEvent>

		<StreamEvent Name="Sunday_Drive_End_Sus1" />

		<StreamEvent Name="Sunday_Drive_End_Sus3" />

	</LogicOrEvent>

</Layer>

LogicAndEvent

<LogicAndEvent>

	<LogicRepeatEvent Times="2">

		...

A LogicRepeatEvent will repeat the sequence events inside it forever or for the specified number of

times.

Times: Specify the amount of times to repeat the event.

OR

MinTimes: Specify the minimum amount of times to repeat the event.

MaxTimes: Specify the maximum amount of times to repeat the event.

OR

Specify no attributes to loop the sequence events forever.

A LogicOrEvent will execute one of the sequence events inside it at random.

	</LogicRepeatEvent>

	<LogicOrEvent>

		...

	</LogicOrEvent>

</LogicAndEvent>

LogicRepeatEvent

<LogicRepeatEvent MinTimes="2" MaxTimes="3">

	<LogicAndEvent>

		<SilenceEvent Time="2000" />

		<SilenceEvent Time="3000" />

	</LogicAndEvent>

</LogicRepeatEvent>

LogicOrEvent

<LogicOrEvent>

A SilenceEvent will play silence for the specified amount of time.

Time: Specify the amount of time.

OR

MinTime: Specify the minimum amount of time.

MaxTime: Specify the maximum amount of time.

A StreamEvent will play the specified Stream.

Name: The name of the Stream to play.

	<StreamEvent Name="Tuba_001" />

	<StreamEvent Name="Tuba_002" />

	<StreamEvent Name="Tuba_003" />

	...

	<StreamEvent Name="Tuba_065" />

	<StreamEvent Name="Tuba_068" />

	<StreamEvent Name="Tuba_069" />

</LogicOrEvent>

SilenceEvent

<SilenceEvent Time="2000" />

<SilenceEvent MinTime="2000" Maxtime="3000" />

StreamEvent

<StreamEvent Name="Simpsons_Theme" />

ClipEvent

Unused.

Name: The name of the Clip to play.

Unused.

Volume: Unknown.

Unused.

Pitch: Unknown.

Unused.

VolumeRandMin: Unknown.

Unused.

VolumeRandMax: Unknown.

Unused.

PitchRandMin: Unknown.

VarVolumeEvent

VarPitchEvent

VarVolumeRandMinEvent

VarVolumeRandMaxEvent

VarPitchRandMinEvent

Unused.

PitchRandMax: Unknown.

Unused.

AuxNumber: Unknown.

AuxGain: Unknown.

Unused.

Positional: Unknown.

Unused.

PosFallOff: Unknown.

Unused.

PosDistMin: Unknown.

VarPitchRandMaxEvent

VarAuxGainEvent

VarPositionalEvent

VarPosFallOffEvent

VarPosDistMinEvent

VarPosDistMaxEvent

Unused.

PosDistMax: Unknown.

Unused.

CallbackName: Unknown.

Unknown.

The names of elements and attributes in this XML format are derived from Radical's official names as

the RMS format stores all of the RadMusic class and field names within it.

Some other design decisions were derived from the plain text RMS format used in other Radical games

such as The Incredible Hulk: Ultimate Destruction.

Items in this documentation that say "Unknown." are used in Hit & Run but their functionality is not

understood.

Items in this documentation that say "Unused." are not used in Hit & Run and their functionality is not

understood.

CallbackEvent

Beat
<Beat>1</Beat>

Notes

Tutorials

Tutorials

In the base game, RMS files are located within ambience.rcf and music01.rcf . These files can be

opened with Lucas' RCF Explorer or extracted with Lucas' Radcore Cement Library Builder.

ambience.rms can be found in ambience.rcf .

l1_music.rms to l7_music.rms can be found in music01.rcf .

Once you have an RMS file extracted, the simplest way to convert it to XML is to drag it onto the RMS

Builder's executable.

This will create an XML file of the same name next to the RMS file.

Converting RadMusic Scripts

to XML

1. Extracting RMS Files

2. Converting to XML

https://donutteam.com/downloads/RCFExplorer/
http://docs.donutteam.com/books/lucas-radcore-cement-library-builder

Tutorials

The simplest way to build a RadMusic Script from an XML file is to drag the XML file onto the RMS

Builder's executable. This will build an RMS file of the same name next to your XML file.

NOTE 1: This method requires your XML files to be in your Mod's sound\music folder if you don't want

to manually move the RMS file there each time you build it.

NOTE 2: This method also does not cover mods that have custom music since you would need to

specify an RSD path with the -rsdpath command line argument for the tool to get information about

the file.

You may want to keep your XML files somewhere other than your Mod's sound\music folder. You can

do this using command line arguments to tell the RMS builder where to build the output RMS file.

We recommend doing this with a batch file. You'll need to use the -inputxml , -outputrms and

-rsdpath command line arguments. You'll need to adjust these paths to your specific setup but here's

an example:

Building RadMusic Scripts

from XML

Method 1 (Simple)

Method 2 (Complex)

@"C:\path\to\LRMSB.exe" -inputxml "%~dp0Build.xml" -outputrms "C:\path\to\YourMod\CustomFiles\sound\music\l1_music.rms" -rsdpath "C:\path\to\YourMod\CustomFiles\sound\music"

